Six Tips to Optimise Compressed Air Systems

Compressed air systems have a number of advantages over electrical, hydraulic, and other kinds of systems commonly used in manufacturing industries. 240 volt electric powered tools and equipment are a well-documented and known OH&S issue, as well as being heavier due to the inherent design of electric motors powers them. Hydraulic power, no matter how well made regularly is associated with messy oil leaks and the hoses are stiff and cumbersome compared to compressed air hoses. Battery powered tools although much improved on earlier models lack the power available with pneumatics and need constant recharging of the limited lifespan of the batteries.

Air Energy supplies complete compressed air systems along with proven high-quality parts including polymer, aluminium, or stainless-steel pipes Australia-wide. In order to bring our customers, the best possible products and give advice they can count on, we draw on our years of experience designing and delivering compressed air systems to the broadest range of diverse industries. In this blog, we use that same experience to offer you some of our top tips for an optimal compressed air system

1. Use the Correct Size of Feeder Pipe

The feeder pipe as the name implies connects the compressor equipment to the ring main and is the main artery of all the compressed air used in your system. If the feeder pipe is too narrow, the airflow will be restricted, resulting in pressure drop and a less efficient overall system. You should always use a feeder pipe that is one size larger than the ring main to avoid airflow restriction

2. Minimise Elbows

You should design your compressed air system to feature as many straight lengths of pipe as possible and keep the number of elbows to the bare minimum, as each elbow results in a pressure drop equivalent to an additional 1-3 metres of straight pipe. Wherever possible, use radius bends and generally endeavour to make your system as straight as it can be. Balancing that is the requirement to allow for pipe expansion and contraction. As a rule-of-thumb 30 metres is regarded as the maximum straight length between expansion/contraction points.

3. Reduce and Manage Contamination

While compressed air systems are clean and dry compared to other types of systems, they can still become contaminated, which leads to corrosion, decreased efficiency, and the need for frequent maintenance and repair. The first step to avoid this problem is ensuring there is minimal contamination in the air supply. As compressed air is typically 8 bar, that means 8 x the contaminants in the surrounding air is concentrated in each volume of compressed air. Choose a location for your system that is as free of moisture and other pollutants as possible and install an air filtration system.

4. Monitor and Address Leakage

There’s a reason we use the term “airtight” to describe something that is totally secure and without fault; compressed air doesn’t require a lot of room to escape, and even a tiny leak can lead to a massively underperforming system. It’s important to locate and fix leaks as quickly as possible, although unfortunately, there are often no external signs of such damage; a leak generally needs to be significantly advanced before you are able to hear it. The best way to avoid this is to start with high-quality pipes and fittings installed by experienced and reputable technicians.

5. Use High-Quality Pipes and Fittings

Leading on from our previous point, using the best quality materials will reduce the likelihood of faults and increase efficiency from the get-go. Conduct thorough research before choosing a supplier/technician and spend plenty of time talking to them to make sure they understand the requirements of your system. They should be able to explain in simple terms why a particular material or product is the best choice for your application.

6. Plan for Expansion

When you are designing your compressed air system, take the time to think about whether it will likely need to be expanded at some point in the future. If you do eventually need to expand, it will be much easier, faster, and more affordable if this possibility was incorporated into your initial design.

How We Can Help

At Air Energy, we pride ourselves on our product line, expertise, and technical craftsmanship, as well as our customer service. We go above and beyond to deliver a final product that exceeds customer expectations every time. To speak to one of our friendly team members, head to the contact section of our website and get in touch by phone or email.